
www.manaraa.com

DynXML: Safely Programming the Dynamic Web

Joshua Sunshine Jonathan Aldrich
{joshua.sunshine,jonathan.aldrich}@cs.cmu.edu

Carnegie Mellon University

Abstract
A single web page in a complex web application has a huge num-
ber of possible runtime states. Functions, like JavaScript event han-
dlers, that operate on such pages are extremely difficult to write
correctly, because there are virtually no guaranteed constraints on
the page. In this paper we propose DynXML, a new language for
the web which safely and naturally mutates XML trees. Any dy-
namic web application written in DynXML is statically guaran-
teed to maintain the page in a subtype of a programmer-defined
page type. Furthermore, event handlers are guaranteed to receive
the page in the state they expect and leave it in the form expected
by the next set of handlers—DynXML prevents page-manipulating
programs from going wrong.

1. Introduction
The web today relies heavily on client-side code whose primary
purpose is to modify a web page represented as an XML docu-
ment. The major examples of this paradigm are JavaScript chang-
ing HTML pages and ActionScript mutating MXML-based Flash
interfaces. None of these client side programming languages, nor,
as far as we are aware any of the myriad tools, frameworks, and
libraries built on top of the native languages (e.g. ASP.NET, Struts,
Java Server Faces, Google Web Toolkit, Ruby on Rails) provide any
guarantees about the state of the pages they modify. The negative
results of this phenomenon are ubiquitous and sometimes severe
— runtime errors, browser crashes, unresponsive applications, and
lost data.

Think of a user composing an email in a webmail client. He
composes an email and clicks send, which triggers the browser
onclick event, which is forwarded to a JavaScript function. This
function expects the page to contain a certain element, which is
missing because of the particular path, chosen possibly from among
thousands, he used to travel to the page state. The email isn’t sent
and the browser may even crash causing him to lose his data.
Similar examples happen to every web user constantly and they
cause much grief. One can easily see evidence of this problem
by looking in the browser’s error console after any long browsing
session and observing the many hundreds of errors logged there.

Very little research has focused on solutions to this problem.
The only work of which we are aware is context logic [6], a Hoare
logic-based formal verification technique for reasoning about dy-
namic updates to tree-like XML documents. While context logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
APLWACA 2010 June 6, 2010, Toronto, Canada.
Copyright © 2010 ACM 978-1-60558-913-8/10/06. . . $10.00

can verify arbitrary correctness properties of programs that manip-
ulate tree structures, this generality also makes it difficult to provide
full automation in a tool.

We are currently investigating whether a type-based approach
could provide basic safety guarantees to the programmer, while
potentially retaining the automatability of type systems. In order
to do so, we build on the regular expression types of Hosoya and
Pierce [19, 21]. However, this and other prior XML-related lan-
guage research [1, 4, 8, 20] focused on purely functional query
and transformation. While this paradigm is natural in many XML-
processing applications, in the setting of dynamic web applications,
a functional approach would introduce copying inefficiencies and
require a drastically different programming style. Our work, there-
fore, focuses on reasoning about the imperative modification of
XML trees.

Support for imperative update, in turn, underlies the central
challenge of this paper: that the structure of an XML tree can
change as it is modified. Therefore, the type system must track the
state of an XML tree flow-sensitively, reason about the side effects
of functions on trees, and control aliasing to ensure that elements
of the page are not unexpectedly changed. Furthermore, dynamic
web pages contain embedded event handlers that are invoked in
response to end-user actions; we must ensure that when these
handlers are invoked, the web page is in the expected state, and
that the handlers leave the web page in a potentially changed but
still well-formed state.

Our paper makes the following contributions to addressing these
challenges:

• The design of DynXML, a language for writing Dynamic XML
pages, is described with several realistic examples (Section 2).
We provide a formal syntax, operational semantics, and typing
rules for DynXML(Section 3).

• A permission-based type system is adapted from the setting
of object calculi [2] to provide flow-sensitive reasoning and
alias control in the setting of the lambda calculus (Section 3.2),
ensuring that page-manipulating code does not go wrong.

• An approach to embedding event handler functions within an
XML page is developed, where the type of the function ex-
presses its effect on the page. The page is typechecked to en-
sure that it will be in the correct state whenever the handler is
invoked, and that the page the handler produces is itself a valid
page that meets the user’s specification (Section 3.5).

• An approach for scoping the modifications a function can per-
form on an XML tree is described, allowing clients to ensure
that parts of the tree they depend on are not modified (Section
3.6).

2. Language
In this section we describe the features of DynXML. We will use
the book store page displayed in Figure 1, as a running example.

www.manaraa.com

Recommended Books:
Advanced Types,
Category Theory

Title: Types and Programming Languages

Author: Benjamin C. Pierce

Price: $57.60

Quantity:

Buy
-OR-

Rating: 1 star ▼

Rate
-OR-

Figure 1. Schematic of book store page.

1 type α page =
2 div[mutable(string)], div[string], α;
3 type thanks = div[string];
4 type rating =
5 div[dropdown[option[int]*], //rating selector
6 button[(rating page)→(thanks page)]];
7 type quantity =
8 div[textbox[], //quantity textbox
9 button[(quantity page)→(rating page)]];

10 type full =
11 mutable(thanks | rating | quantity); 1

Listing 1. Code describing type of book store item page.

This page is divided into three parts. The top section lists related
books that the store recommends to the user. The middle contains
the main content like the book title, description and price. Finally,
the bottom section has three alternate states: 1) the purchasing state,
which contains a textbox allowing the user to enter the quantity of
books to buy and a button to process the purchase; 2) the rating
state, which allows a user who has already purchased a book to
select a rating from a dropdown list and to push a button to finalize
the rating; and 3) the thanks state, which thanks a user who has
already purchased and rated the book.

2.1 XML Types
This page can be represented as a type such as a DTD [5] or
XML Schema [13]. Our XML description syntax borrows heav-
ily from the regular expression types of Hosoya and Pierce [21].
The type constructor n[. . .] classifies XML nodes with the label
n (i.e. <n> . . .</n>). The inhabitants of the type div[string] are
div elements containing a string (e.g. <div>Hello World!</div>).
Types can also include regular expression operators like * (repe-
tition); ? (option); , (sequence); and ∣ (union). Therefore, the type
table[tr[td[(int∣string), textarea[]?]]∗] is the type of all one col-
umn tables whose cells each include an integer or a string followed
by an optional textarea.

The type of the book store item page in DynXML is in Listing
1. The code in this listing assumes a condensed version of XHTML
without XML attributes. For example, a textbox element in html
is normally written <input type=“text”/>, but instead we write
<textbox/>, which corresponds to the type textbox[]. For simplic-

ity’s sake we have chosen to follow Hosoya and Pierce [21] and
encode attributes as subelements.1

The type constructor2 page takes a type argument α and de-
scribes a page that contains a div element for the book recommen-
dation at the top of the page, a div element for the item descrip-
tion in the middle of the page, and a variable element described by
the type argument for the bottom section of the page. The types
quantity, rating, and thanks are the types for the last element of
the page when it is in the purchasing state, the rating state, and
the thanks state respectively; we can combine these with the over-
all page type to describe the full page in the purchasing state as
quantity page. Type full represents the type of the bottom section
of the page in all three possible dynamic states. It will contain a
textbox and button in the purchasing state, a dropdown and button
in the rating state, and simply a string in the thanks state.

DynXML supports recursive types, which you can see in action
in several places in Listing 1. For example, the button in quantity
contains an arrow type which refers to quantity page. We also
use recursive types to encode several regular expression types as
derived forms.

The arrow types embedded in the buttons in Listing 1 illustrate
one of DynXML’s most interesting features. They are manifesta-
tions of the event handlers introduced in Section 1. We treat event
handlers as functions which are passed the page as an argument and
return it as the result.

The right and left halves of the arrow type are not fixed types,
but instead flow-sensitive permissions. We use permissions to track
the precise type of XML trees as they are modified. 3 We call this
precise type the current state; it is the system’s best estimate of
the most specific current type for the expression referenced by the
permission, and is expressed using the regular expression types
introduced earlier in this section.

Permissions are linear resources that cannot be duplicated, so
they can be used to ensure that an XML tree is not modified through
aliased pointers. If a permission to a tree is not passed to a function,
we can be sure that function will not modify that tree.

DynXML’s type system is richer and more complex than what
is illustrated here. Permissions in the full system contain not only
the current state, but also the maximum state—a programmer spec-
ified constraining type. The maximum state is also written using
regular expression types. DynXML guarantees that the expression
referenced by the permission will always conform to the maxi-
mum state. The maximum state serves a software engineering pur-
pose. It acts as a global invariant on the page which limits the data
a page can contain and thereby shrinks the universe of pages to
programmer-understandable size.

By contrast, the current state of an XML document will change
from one program points to another. For example, the XML doc-
ument referred to by the permission when a function is called is
guaranteed to conform to the current state given there, but the state
of the document may change as the function executes. The maxi-
mum state throughout the example in Listing 1 is full page.

In the calculus, a permission is accompanied by standard types,
which correspond to the types in the lambda calculus. Unlike per-

1 Many real examples require a more sophisticated approach to attribute
types [18, 22]. These examples are important, but the problems they present
are orthogonal to those that we’re dealing with in this paper.
2 The focus of this paper is not on parameterized XML types, but as this
example shows type parameters enable programmers to reuse the top-level
type of an XML tree when one of several subtree types can be plugged into
one of its parts
3 It may be worth exploring purely functional alternatives such as monads
in the future, but it was not obvious to us how a monad-based solution could
provide the flexibility and reasoning of our permissions system.

www.manaraa.com

1 fn buy = lambda page:
2 XML,(full page@quantity page) =>
3 //persist purchase
4 recommend(page);
5 page.3 := <div><dropdown> 2
6 <option>1</option>
7 . . .
8 </dropdown>
9 <button>rate</button></div>;

10 page; // return the page
11

12 fn rate = lambda page:
13 XML,(full page@rating page) =>
14 //persist rating
15 recommend(page);
16 var options = page.3*.1*; 3 4
17 var grade;
18 for(option:options)
19 if (option selected)
20 grade = option*;
21 var thankstring =
22 ‘‘Thanks for giving the book ’’
23 .grade.‘‘ stars!’’;
24 page.3 := <div>thankstring</div>;
25 page; //return the page

Listing 2. Code for button click event handlers.

missions, standard types are not flow sensitive. The operations on
types like integers, strings, or functions are static. In the case of
XML documents, the standard type is always XML. The standard
type prevents us from mixing up XML documents and functions,
but ensuring that an XML page is valid or has a particular structure
is done using permissions, not types.

Permissions, like types in most programming languages, are
stated explicitly in code only at function boundaries. In other
words, the programmer is only required to write the permissions of
parameters to and values returned by functions. Within a function
the system maintains a list of permissions in the permission con-
text, each of which is automatically updated as changes are made
to the XML documents referred to by the permissions. Therefore,
the system is modular— an implementation of DynXML should be
able to check each method independently.

In general, the maximum state for any XML document will al-
ways remain the same, while the current state may change if an
assignment is made to an element of the document. The current
state allows programmers to safely use or manipulate the XML
document more conveniently then they could if we only maintained
the maximum state. For example, imagine we have an XML docu-
ment containing only an integer, maximum state (int ∣ string), and
current state int. If we only maintained the maximum state, the
programmer, who knows the value of the document is an integer,
would be forced to pattern match against the document, throw an
exception if a string is found and only then use the integer. Instead,
in our system he can simply use the integer like any other (e.g. by
adding it to another one).

2.2 Functions and Event Handlers
The bodies of the buy and rate event handlers are shown in List-
ing 2. The parameters to both functions are annotated with a
fully general type. The parameter to the buy function has type
XML,(full page@quantity page), which specifies that page’s stan-
dard type is XML, its maximum state is full page, and its current

1 type rec = thanks | rating | quantity; 5
2

3 fun recommend = lambda page:
4 XML,(rec page@rec page) =>
5 match ((page.3)*).1 with
6 textbox[] in //purchasing state
7 ((page.1)*).1 := ‘‘Harry Potter’’;
8 dropdown[option[int]*] in //rating state
9 ((page.1)*).1 := ‘‘Advanced Types’’;

10 string in //thanks state
11 if(ratedwell)
12 ((page.1)*).1 := ‘‘Advanced Types’’;
13 else
14 ((page.1)*).1 := ‘‘Harry Potter’’;

Listing 3. Recommendation engine code.

state is quantity page. The code at 2 uses the .n operator which
projects out the nth element of a sequence. At 3 we use a similar
operator, *, which projects out the internals of a node. For exam-
ple, let’s say the variable x has current state a[b, c]. The current
state of x* would be b, c. Both functions call the recommend func-
tion which we will discuss at length later. The buy function simply
transitions the page to the ratings state. The ratings function deter-
mines what rating the user gave the book and thanks the user for
his rating — transitioning the page to the thanks state.

The assignment operator := assigns the expression on the right
of the operator to the reference cell on the left. Every node in an
XML tree in DynXML is conceptually a reference cell. However,
the maximum state of the tree must enclose this cell in the mutable
keyword for the assignment to be valid. For example, in Listing 1,
the mutable keyword at 1 encloses all three states of the bottom
section which allows the event handlers to change this section of
the page.

2.3 Maintaining Precise State
The code in Listing 3 adds the recommendation engine facility we
mentioned earlier. The type rec page is the current and maximum
state of the page parameter passed to the function responsible for
generating new recommendations. The body of the function pattern
matches against the third node of the first div to determine the state
of the page. If this element is a textbox, than the page is in the
purchasing state—since the user has not yet purchased the book, the
program recommends a general interest book, Harry Potter. After
the user purchases Types and Programming Languages, the page is
in the rating state with a dropdown, so the application recommends
a related book, Advanced Types. Finally, in the thanks state the
application recommends related books if the user gave the book
a good rating and recommends general interest books otherwise.

Notice that the current state of the recommend function’s pa-
rameter is rec page, while the parameter of the rate event handler
has state rating page. Our subtyping facility, which we describe in
detail in Section 3.3, allows the page to be passed from the rate
function to the recommend function. For now, think of subtyping
in terms of set inclusion. For example, rate page is a subtype of
rec page. Therefore a page in the rating state can safely be passed
to both the rate event handler and the recommend function.

The type of the recommend function’s parameter is tailored to
minimize information loss. The mutable keyword that appears at 1
of Listing 1 does not appear at 5 of Listing 3. This means that when
clients call the recommend function, they can be confident that
recommend will not change any part of the third div of the page.
This means that even though recommend returns a permission to

www.manaraa.com

the page that does not specify if the page’s third div is in the thanks,
rating, or quantity states, if the client knows that this part of the
page was in the rating state before the call, it can conclude that
the div is still in the rating state. Essentially, the mutable keyword
acts to scope the possible effects that the recommend function may
have on the page.

For example, look back at the rate function in Listing 2. The
page enters the rate function with current state rating page. Then,
the page is passed to the recommend function which mutates the
page and returns it. The current state returned by this function is
rec page. The system must then merge the current state rec page
from recommend with the current state, rating page it held before
the event was fired. We want the system to maintain the current
state rating page for the page, since this is still its most specific
type. It does so by merging only the sections marked as mutable
in the returning permission. In this case, the only section that is
mutable is the string in the first div. This same string appears in
rating page so that the current state is maintained. This allows
the programmer to safely write the code at 4 which accesses the
user ratings dropdown list. If the current state were rec page, the
programmer would first have to match against all three components
of the union type to extract the rating she knows will always be
there.

The function recommend is written with type rec page so that
it can be more generic and can be called with the page in any
of 3 states. Permission merging allows the caller to reason about
what is changed. This effects a kind of polymorphism, but is more
lightweight than adding a polymorphic type for every non-mutable
sub-part of the page. In particular, a polymorphic solution does not
scale well to pages with many different mutable sections as a type
parameter would be required for each one.

3. Formal System
This section formalizes DynXML and it differs in a few ways from
the examples given in Section 2. The examples make use several
of additions and simplifications to ease understanding 4. Our type
system does not include type abbreviations, looping constructs, or
base types (e.g. string, booleans), all of which are well understood
and would only add needless complexity. Our type system requires
all code to be in let-normal form, but the examples are instead
written using the more familiar sequence (;) notation.

3.1 Syntax
Figure 2 shows the syntax of DynXML. We distinguish between
pure terms t and possibly effectful expressions e. Arguments to
functions and even inputs to built-in operators are restricted to
terms. Instead, expressions are bound to variables using the let
syntactic form. The entire program is therefore in let-normal form.
This serves two purposes — it makes execution order explicit and
allows permissions to refer to store locations by name.

Most of the expression forms are standard or were introduced
in Section 2. Function application is written t(t), and XML pairs
are introduced by writing t t. The expression page t instructs
DynXML to check all events embedded in the XML document
t, a topic that will be discussed at length in Section 3.5. The only
terms are variables, function abstractions, memory locations (`),
and unit.

The function abstraction form listed here adds one wrinkle
to what was discussed in Section 2. The ∆ in the abstraction

4 Two type constructors introduced in Section 2 can be encoded as a com-
bination of other constructors. These derived forms are not present in the
syntax of our formal system. The option type, T?, can be rewritten as a
union of the type T and the unit type, T ∣Unit. The list type, T*, can be en-
coded as using a recursive type, pair type, and unit type: recX⇒T,X ∣Unit

(Expressions) e ∶∶= let x = e in e ∣
page t ∣ <n>t</n> ∣
tt ∣ t.1 ∣ t.2 ∣
t∗ ∣ t ∶= t ∣ t(t) ∣ t

(Values) v ∶∶= λx∶τ.∆⇒e ∣ () ∣ `
(Terms) t ∶∶= v ∣ x

(Static Types) T ∶∶= T, p>>p.∆→τ.∆ ∣
Unit ∣ XML ∣X ∣
recX⇒T

(XML Types) M ∶∶= M ∣M ∣M,M ∣ n[M] ∣
mutable(M) ∣ T

(Types w/Holes) M ∶∶= {−} ∣M∣M ∣M ∣M ∣
M,M ∣M,M ∣ n[M] ∣
mutable(M) ∣M

(Permissions) p ∶∶= M@M ∣ ⊸ p

(Types) τ ∶∶= (T, p) ∣ ∅
(Perm. Refs) r ∶∶= x ∣ r∗ ∣ r.1 ∣ r.2 ∣ `

(Stores Values) s ∶∶= vv ∣ <n>v</n> ∣ v
(Stores) µ ∶∶= µ, `=s ∣ ∅

(Contexts) Γ ∶∶= Γ, x∶T ∣ ∅
(Perm. Contexts) ∆ ∶∶= ∆, r∶p ∣ ∅

(Store Typings) Ψ ∶∶= Ψ, `∶T ∣ ∅

Figure 2. Syntax

form (λx∶τ.∆⇒e) allows the programmer to specify permis-
sions to non-parameters in the function declaration. This is im-
portant to verify functions with free variables, which is neces-
sary to support common idioms like currying and partial eval-
uation. Similarly, the arrow type contains a delta on both the
right and the left of the arrow which contain input and output
permissions for free variables. Finally, the p>>p in the arrow
type specifies the pre and post state of the function’s parame-
ter. For example, the full type of the rate function in Listing
2 is XML,full page@rating page>>full page@thanks page.∅ →
Unit,Unit@Unit.∅. Notice that the permission to the page is not
returned as the result of the function. Instead, the result of the
function is unit. Nonetheless, as we will explain in Section 3.4, the
permission to page winds up in the permission context produced by
function application just as it would if it were the function’s result.

We also distinguish between the regular expression types in-
troduced in Section 2.1 and called XML Types here, and standard
types. The current state and maximum state in a permission are
XML types, while regular types are used in the regular way. The
standard types include one type, XML, which is the type of any
XML document. Permissions primarily refer to expressions of this
type.

Permissions refer to locations, variables, and subcomponents of
XML trees with r.1, r.2, or r*. These subtree references are used
when the system infers permissions to subtrees from permissions
to the main tree. We will delve into the details of permissions in
Section 3.2.

All of the judgements used in DynXML are listed alongside
their defining rules in the figures spread throughout the paper. There
are two typing judgments: Γ;Ψ;∆ ⊢e e ∶ τ ⊣ ∆ for expressions
and Γ;Ψ ⊢t t ∶ T for terms. The typing rules used to interpret
these judgments will be introduced in Section 3.4. In our typing
rules we sometimes need to extract new permission from existing
ones and we check that this is safe with Γ;Ψ;∆ ⊢∆ ∆ (Section
3.2). Our typing rules also convert XML types to standard types

www.manaraa.com

M ↝ T

M = T
M ↝ T

C-T
M =M1∣M2

M ↝ XML
C-UNION

M =M1,M2

M ↝ XML
C-CONCAT

M = n[M ′]

M ↝ XML
C-NODE

M = mutable(M ′)
M ↝ XML

C-REF

Figure 3. Conversion of expression types and term types.

using M ↝ T (Section 3.2). We define DynXML’s semantics with
a small step operational semantics using, e ∣µ ↦ e ∣µ (Section
3.7). The types with holes syntactic category, the page t expression
form, and the M ;M ⊢M M judgement all relate to the checking
of events embedded in XML documents, and will be discussed in
Section 3.5.

3.2 Preliminaries
Figure 3 shows the conversion rules used in the typing rules to
convert XML types to regular types. The rules, C-UNION, C-
CONCAT, C-NODE, and C-REF simply convert tree structure XML
types to the type XML. The rule C-T, converts XML types that are
exact standard types to the standard type. This rule applies when
functions or Unit appear inside an XML tree. It would also apply
to the integers, strings, and booleans in our examples in Section 2.
In Listing 4, the int type in the current state of x.2 is converted to
by C-T to a standard int and added to one.

Many of the typing rules discussed in Section 3.4 rely on the
permission context judgement, Γ;Ψ;∆ ⊢∆ ∆′. This judgement is
defined in Figure 4. The judgment asks what permission context
can we derive from an existing permission context. The simplest
rule, P-IN, says that a permission context containing a single per-
mission p, derives from any permission context containing p. P-
PAIR derives a pair of permissions p1 and p2 from a context that
implies both p1 and p2. Note that the context that implies p1 must
be distinct from the context that implies p2.

DynXML often needs to derive a permission for an XML sub-
tree from a permission to the main tree. The three rules SP-INNER,
SP-PROJ1, and SP-PROJ2 provide this facility. They do so by split-
ting the original permission into a permission to the subtree and a
contract to return the original permission if given the subtree per-
mission. This contract is written using the linear implication oper-
ator ⊸ which should convey the right intuition to readers familiar
with linear logic.

When a permission to the main tree is needed again it is re-
covered with one of the combination rules, namely C-INNER, C-
PROJ1 or C-PROJ2. These rules take the two permissions that were
created by the corresponding split rule and combine them into a
modified version of the original permission. The current state in the
permission to the subtree replaces the corresponding component of
the current state of the main tree. This modification is necessary to
update the main tree’s permission to make any modifications (e.g.
assignments) made to the subtree.

The rule SP-PROJ2 is employed at 6 of Listing 4. In that
example we derive two permissions: 1) A permission to x.2 with
current state int and maximum state b ∣ int. 2) A contract which
allows us to recover the permission to x given in the specification
of f from the first permission. Consider adding a new function call
bar(x) to the end of the body of f: C-PROJ1 will recover the original
permission to x to enable the call.

Γ;Ψ;∆ ⊢∆ ∆

p ∈ ∆

Γ;Ψ;∆ ⊢∆ p
P-IN

Γ;Ψ;∆1 ⊢∆ p1 Γ;Ψ;∆2 ⊢∆ p2

Γ;Ψ;∆1,∆2 ⊢∆ p1, p2
P-PAIR

Γ;Ψ;∆ ⊢∆ x∶n[M1]@n[M2]

Γ;Ψ;∆ ⊢∆ x ∗ ∶M1@M2, x∗∶⊸ n[M1]@n[M2]
SP-INNER

Γ;Ψ;∆ ⊢∆ x∶M1,M
′
1@M2,M

′
2

Γ;Ψ;∆ ⊢∆ x.1∶M1@M2, x.1∶⊸M1,M
′
1@M2,M

′
2

SP-PROJ1

Γ;Ψ;∆ ⊢∆ x∶M1,M
′
1@M2,M

′
2

Γ;Ψ;∆ ⊢∆ x.2∶M ′
1@M ′

2, x.2∶⊸M1,M
′
1@M2,M

′
2

SP-PROJ2

Γ;Ψ;∆ ⊢∆ x∗∶M1@M ′, x∗∶⊸ n[M1]@n[M]

Γ;Ψ;∆ ⊢∆ x∶n[M1]@n[M ′]
C-INNER

Γ;Ψ;∆ ⊢∆ x.1∶M1@M ′′
1 , x.1∶⊸M1,M2@M ′

1,M
′
2

Γ;Ψ;∆ ⊢∆ x∶M1,M2@M ′′
1 ,M

′
2

C-PROJ1

Γ;Ψ;∆ ⊢∆ x.2∶M2@M ′′
2 , x.2∶⊸M1,M2@M ′

1,M
′
2

Γ;Ψ;∆ ⊢∆ x∶M1,M2@M ′
1,M

′′
2

C-PROJ2

Figure 4. Permissions

3.3 Subtyping
Figure 5 shows our subtyping rules. S-UNION3 says that union
type is symmetrical, and S-UNION2 says that each half of a union
type is a subtype of the union type. S-UNION1 allows union A as
a subtype of union B if each of A’s subcomponents is a subtype of
B’s subcomponents. S-MUT says that an XML type surrounded by
mutable XML type is a subtype of the same XML type without the
mutable keyword. The type system relies on the uniqueness of the
permission and its current state to determine the type of a subtree.
It does not need to rely on whether a reference is marked mutable
to know if it has changed. Therefore, this subtyping rule is safe
because any mutable element can also be used as an immutable
element. S-CONCAT specifies that pair A is a subtype of pair B
if A’s first component is a subtype of B’s first component and A’s
second component is a subtype of B’s second component. XML
node subtyping is handled in the obvious way by S-XML. The
transitivity and reflexivity of subtyping is ensured with rules S-
TRANS and S-REFL.

One point worth mentioning here is that our subtyping can be
used to elegantly guarantee that any page in DynXML is valid
HTML. A library writer could encode the type of all valid HTML
pages [10] pages as a DynXML XML type.5 Then, a programmer
could specify that all of her page types are subtypes of the valid
HTML type. Then, any page generated by DynXML will always
be valid HTML.

5 Our XML types cannot capture the full richness of the XHTML specifica-
tion. For example, we cannot specify that the value of id attributes must be
unique throughout a document. However, an important subset of the speci-
fication can be encoded, and more importantly, enforced by DynXML.

www.manaraa.com

Γ;Ψ ⊢t t ∶ T Γ;Ψ;∆ ⊢e e ∶ τ ⊣∆

x ∶ T ∈ Γ

Γ;Ψ ⊢t x ∶ T
T-VAR

Γ;Ψ ⊢t () ∶ Unit
T-UNIT

Ψ(`) = T
Γ;Ψ ⊢t ` ∶ T

T-LOC
Γ,x∶T ;Ψ;∆1, x∶p ⊢e e ∶ τ2 ⊣∆2 ∆2[x] = p′

Γ;Ψ ⊢t λx∶T, p.∆1⇒e ∶ T, p>>p′.∆1→τ2.(∆2∖x)
T-ABS

Γ;Ψ;∆1 ⊢e e1 ∶ (T1, p1) ⊣∆′1
Γ, x ∶ T1;Ψ;(∆2,∆

′
1, x ∶ p1) ⊢e e2 ∶ T2 ⊣∆3

Γ;Ψ;(∆1,∆2) ⊢e let x = e1 in e2 ∶ τ2 ⊣ [e1/x]∆3
T-LET

Γ;Ψ ⊢t t ∶ XML Γ;Ψ;∆ ⊢∆ t∶p
Γ;Ψ;∆ ⊢e t ∶ XML, p ⊣ ∅

T-XMLTERM

Γ;Ψ;∆1 ⊢e t1 ∶ T,mutable(M)@M ′ ⊣ ∅
Γ;Ψ;∆2 ⊢e t2 ∶ T,M1@M ′

1 ⊣ ∅ M ′
1 <∶M

Γ;Ψ;(∆1,∆2) ⊢e t1 ∶= t2 ∶ Unit, (Unit@Unit) ⊣ t1∶mutable(M)@M ′
1

T-ASGN
Γ;Ψ ⊢t t ∶ T T ≠ XML

Γ;Ψ;∆ ⊢e t ∶ T,T@T ⊣ ∅
T-TERM

Γ;Ψ;∆1 ⊢∆ t1∶M1@M ′
1 Γ;Ψ;∆2 ⊢∆ t2∶M2@M ′

2

Γ;Ψ;∆1,∆2 ⊢e t1t2 ∶ XML,M1,M2@M ′
1,M

′
2 ⊣ ∅

T-PAIR

Γ;Ψ ⊢t t ∶ XML
M2;{−} ⊢M M2 Γ;Ψ;∆ ⊢∆ t∶M1@M2

Γ;Ψ;∆ ⊢e page t ∶ XML,M2@M2 ⊣ ∅
T-PAGE

Γ;Ψ;∆ ⊢∆ t.1∶M1@M ′
1

M1 ↝ T

Γ;Ψ;∆ ⊢e t.1 ∶ T,M1@M ′
1 ⊣ ∅

T-PROJ1

Γ;Ψ;∆ ⊢∆ t.2∶M2@M ′
2

M2 ↝ T

Γ;Ψ;∆ ⊢e t.2 ∶ T,M2@M ′
2 ⊣ ∅

T-PROJ2

Γ;Ψ;∆ ⊢∆ t∗∶M@M ′

M ↝ T

Γ;Ψ;∆ ⊢e t∗ ∶ T,M@M ′ ⊣ ∅
T-INNER

M1 <∶M3 Γ;Ψ;∆ ⊢∆ t∶M2@M1

Γ;Ψ;∆ ⊢e <n>t</n> ∶ XML,n[M3]@n[M1] ⊣ ∅
T-XML

Γ;Ψ ⊢t t2 ∶ T Γ;Ψ;∆ ⊢∆ ∆1 Γ;Ψ;∆ ⊢∆ t2∶M1@M ′
2

Γ;Ψ ⊢t t1 ∶ T,M1@M2>>p.∆1→τ2.∆2 M ′
2 <∶M2

Γ;Ψ;∆ ⊢e t1(t2) ∶ τ2 ⊣∆2, t2∶p
T-APP

Figure 6. Typing

M <∶M

M1 <∶M ′
1 M2 <∶M ′

2

M1∣M2 <∶M ′
1∣M ′

2

S-UNION1

M1 <∶M1∣M2
S-UNION2

M1∣M2 <∶M2∣M1
S-UNION3

M1 <∶M ′
1 M2 <∶M ′

2

M1,M2 <∶M ′
1,M

′
2

S-CONCAT

mutable(M) <∶M
S-MUT

M1 <∶M ′
1

n[M1] <∶ n[M ′
1]

S-XML

M1 <∶M2 M2 <∶M3

M1 <∶M3
S-TRANS

M <∶M
S-REFL

Figure 5. Subtyping

3.4 Typing Rules
Throughout the remainder of Section 3 we will illustrate the judge-
ments and inference rules that define the system with the code
shown in Listing 4. The example illustrates alias control with per-
missions. The function f takes an XML document, x whose current
state is an a node followed in sequence by an integer. The maxi-
mum state, however, allows the integer cell to change to a b node.
Function f calls another function g, specified but undefined at 7 ,
and passes x’s second subtree. Then, an unspecified function h is
called. Finally, x.2 is added to one which is only valid if x.2 is an
integer.

1 fun f = lambda x
2 :XML.(a,mutable(b|int))@(a,int) =>
3 g(x.2); 6
4 h();
5 x.2+1; // valid
6 fun g = lambda y:XML.int>>int => ... 7

Listing 4. Permissions control aliasing, allowing DynXML to
safely track state information.

This example is not in let-normal-form, to ease reading, but
this is otherwise valid DynXMLcode. DynXML verifies both that
g doesn’t change the memory cell referred to by x.2, and that h
doesn’t know about x at all.

DynXML’s typing rules are shown in Figure 6. As discussed
in Section 3.1 we have two typing judgements — one for terms
and one for expressions. The first four rules in Figure 6 use only
the term typing judgement. These rules are fairly standard: T-VAR
extracts the type of variables from the context; T-UNIT assigns the
unit type to unit terms; T-LOC extracts the type of locations from
the store typing context; finally, the abstraction rule T-ABS assigns
an arrow type to a function. Notice that the permission produced
for the function, p′, is extracted from the context, ∆2 produced by
checking the function body.

The rest of the typing rules rely on the substantially more com-
plex expression typing judgment, Γ;Ψ;∆ ⊢e e ∶ T,M@M ′ ⊣ ∆′.
A permission context, written ∆, appears on both sides of the
judgement. This is because it is a linear context and therefore the
judgement both consumes and produces permissions. The type T
in the expression type is the same as in the term type. The permis-
sion produced for e, writtenM@M ′, follows immediately after the

www.manaraa.com

type. Permissions to other values produced by checking e appear in
∆′.

One of the primary goals of DynXML is to check that a modi-
fication to an XML tree is safe. The three premises of the T-ASGN
rule perform checks to this end. The maximum state of the term
must be enclosed in a mutable tag for reasons introduced in Sec-
tion 2.3 and expanded in Section 3.6. We also ensure that the cur-
rent stateM ′

1 of the term t2 on the right hand side of the assignment
conforms to the maximum state of t1. Finally, the permissions pro-
duced to t1 retains the current state of t2.

The let rule, T-LET, is perhaps the most important rule in our
system. Notice that the permission context produced by the vast
majority of the rules is empty. In general, our rules drop rules that
are not explicitly related to the expression being evaluated. In other
words we drop unused permissions in the input context. This sim-
plifies our rules because we do not need to separate unused permis-
sions. The let rule splits the permissions into two parts. The first
part, ∆1 is used to check the expression e1 bound to the variable
x. The rule does not specify which permissions are in ∆1, but it
should be clear from this discussion ∆1 should equal the smallest
subset of the input permissions that can safely check e1. Since all
DynXML programs are in let-normal form we avoid losing permis-
sions by carefully splitting at in this manner. Then, the permission
∆′1 generated by checking e1 is combined with the second part ∆2

to check the body of the let e2. Finally, the permission generated
by checking e2 is also produced when checking the whole let ex-
pression.

When a new pair is created in the system a new permission is
created with the T-PAIR. The rule splits the context used to check
the pair t1t2 and then checks that it can derive a permission for each
of t1 and t2. It then converts the XML type containing the pair of
the maximum states from the permissions into a standard type. The
resultant type is this standard type. The permission formed contains
a maximum state which is a pair of t1 and t2’s maximum state and
a current state which is a pair of t1 and t2’s current state.

New XML documents are checked using the T-XML. This rule
creates a new permission for the new XML tree just like the pair
rule. The current state of this new permission is simply the current
state of enclosed term t, surrounded by the type of the new root
node <n></n>. The maximum state is the same tree type, that
instead contains a supertype of the current state of t. This rule
does not specify a particular supertype, instead it is “chosen” non-
deterministically. This supertype can contain mutable constructs
and union types (∣). In fact, T-XML is the only way to introduce
these forms into XML trees.

The three rules T-PROJ1, T-PROJ2, and T-INNER are very
similar to each other. Understanding T-PROJ1 should be sufficient
to understanding the others. The first premise states that we must
be able to derive a permission for t.1 from the context. This usually
will require permission splitting as discussed in Section 3.2. The
second premise says that the maximum state in the permission to
t.1 converts to type T (Section 3.2). At 6 of Listing 4, T-PROJ2 is
employed when passing x.2 to g.

In T-APP, the permission context used to check the applica-
tion is derived from the parameter specification provided by the
programmer. The argument term is simply substituted for the for-
mal parameter in the specified context. This rule ensures that the
permission—which by a typing invariant is the only one in the
system—is passed to the called function. Therefore, in Listing 4, f
holds the only permission to x. This brings up subtle distinction be-
tween permissions and parameters. In our example h is not passed
x and therefore cannot manipulate it. However, if h was a lambda
nested inside f, then x would be in scope, and if the right permission
were passed to h, then h could use x even if x itself were not passed
as a parameter. Finally, notice that permission produced by includes

both the permission context produced by checking the function and
the permission to the argument (t2∶p′).

The final rule, T-PAGE, checks an XML tree that the program-
mer has declared to be a webpage with the page keyword. Web-
pages are treated specially in DynXML because the functions em-
bedded in them are checked to ensure they expect the page as an
argument and return it as a result (Section 3.5). Note, that the page
keyword has only degenerate operational semantics, its primary
purpose is to tell the typechecker to check the validity of events.
The third premise invokes the event handling judgement which per-
forms this check. Finally, the permission to the page has the same
maximum state and current state. This ensures that the state of the
page cannot change after the event checking has taken place.

3.5 Event Handlers
One of the core features of DynXML is that programmers can
embed functions inside XML trees. We believe this cleanly en-
codes the event handlers for particular form elements (e.g. buttons,
textboxes). These event handlers often use data from the page or
modify the page. Therefore, a helpful intuition is to think of them
as functions that are passed the page as an argument by the browser
and return the page as a result. We need to check that these func-
tions maintain the page in a valid state. As explained in Section
3.4 this check happens when an XML tree is declared as page with
the page keyword. The rules governing these checks are shown in
Figure 7.

The syntactic forms in the category M, are XML Types with
holes, and are shown in Figure 2. We borrow the hole notation
from evaluation contexts [25]. We write a hole {-}, and we “fill”
a hole in aM by writingM{M′}. Filling a hole inM withM′

simply replaces the hole with M′. For example, say we have a
typeM = n[{−}], filling it with unit by writingM{Unit} gives us
n[Unit]. Several XML types, namely pairs, union types, and trees
contain subcomponents. TheM syntactic category contains three
types of forms: holes ({-}), XML types with exactly one of the
subcomponents replaced with aM, and XML Types (M).

The event checking rules rely on a special judgement,M ;M ⊢M
M ′. This judgement checks the arrow types representing all event
handlers attached to a page. The left side of each arrow type should
contain a permission to the page with current and maximum states
that conform to the type of the page to which they belong. The rules
in Figure 7 are stated declaratively, but here we will describe them
algorithmically. The rules construct a type of the page that each
event handler should expect. In the event checking judgement used
in all of the rules, the M in the hypothesis is the maximum state
of the page, theM is the partially constructed type of the page an
event handler should expect, and the M in the conclusion is the
subtree being checked.

H-XML, H-MUTABLE, H-UNION, and H-PAIR are responsi-
ble for splitting up the tree and recursively calling the judgement
on their subcomponents. Notice that the partially constructed page
type used to check each subcomponent in H-UNION and H-PAIR
are different. An event handler that is in subtree A of a union type
A∣B need not worry about handling a page that contains B. If the
event fires, then we know the page contains A and not B. The
rule H-UNIT does nothing as unit contains no subcomponents and
therefore the search need not proceed further. If we were to add
new types like string or int we would need to add similar rules for
these types.

The rule H-ABS checks arrow types. The now fully constructed
page type T, p>>p′.∆1→τ.∆2 must be a subtype of the current
state stored in parameter’s permission. The page must be able to be
passed to the event handler. In addition the maximum state in the
result permission must be a subtype of the maximum state of the
page. We do not want the event handler to change the page beyond

www.manaraa.com

M ;M ⊢M M

Mtype;M{n[{−}]} ⊢M M

Mtype;M ⊢M n[M]
H-XML

Mtype;M{mutable({−})} ⊢M M

Mtype;M ⊢M mutable(M)
H-MUTABLE

Mtype;M ⊢M M1 Mtype;M ⊢M M2

Mtype;M ⊢M M1∣M2
H-UNION

Mtype;M{({−},M2)} ⊢M M1

Mtype;M{(M1,{−})} ⊢M M2

Mtype;M ⊢M M1,M2
H-PAIR

Mtype;Mpage ⊢M Unit
H-UNIT

p′ =M2@M2 p =Mtype@M1

(M{T, p>>p′.∆1→τ.∆2}) <∶M1 M2 <∶Mtype

Mtype;M ⊢M T, p>>p′.∆1→τ.∆2

H-ABS

Figure 7. Event Checking

the scope of the maximum state. Finally, the permission returned by
the event handler must have the same maximum and current states
to ensure the page isn’t changed further after the page check in the
fuction.

3.6 Mutable Keyword
The mutable keyword, as explained at the end of Section 2, reduces
the pattern matching required of the programmer. After a function
is returned, the permission from the returning function are merged
with the permissions stored by the caller. The current states are
merged by maintaining any information that doesn’t appear within
a mutable keyword in the called function. This information is safe
to maintain because it cannot be modified inside the function.

The rules in Figure 8 define a new judgement, M1;M2;M3 ⊢m

M4, which supports the mutable keyword. The judgement derives
the current state of the function parameterM4 from the parameter’s
maximum state, M1; the current state of the argument at the call
site, M2; and the current state of the parameter after the function
has returned M3. Throughout the rest of this section we will call
M1 the maximum state, M2 the input, M3 the output, and M4 the
result. This helper judgement is a new premise in a modified T-APP
rule. The result is substituted for the current state of the argument
in the permission context ∆2.

Rules M-1, M-2, and M-3 allow for arbitrary reordering of
union types. This corresponds to reordering of union subtyping,
S-UNION3, discussed in Section 3.3. The next two rules, M-PAIR
and M-XML, apply the judgement recursively to subtrees of the
maximum state, input, and output. Any simple type, handled by
M-T, is always exactly the same in the maximum state, input, and
output, and it is therefore also the result. When a mutable keyword
appears in the maximum state, as in M-MUT, the result is the
current state of the parameter.

The remaining rules apply when the maximum state is a union
type. Remember when reading these rules that ordering within
unions is immaterial. When the input,M2, is not a union type, then
the result derives from the half of the maximum state corresponding
toM2. This principle is enunciated primarily in M-UNION1, which
eliminates M ′

3 from consideration since it could come about only

M ;M ;M ⊢m M

M ′
1∣M1∣;M2;M3 ⊢m M4

M1∣M ′
1∣;M2;M3 ⊢m M4

M-1

M1;M ′
2∣M2;M3 ⊢m M4

M1;M2∣M ′
2;M3 ⊢m M4

M-2
M1;M2;M ′

3∣M3 ⊢m M4

M1;M2;M3∣M ′
3 ⊢m M4

M-3

M1;M2;M3 ⊢m M4 M ′
1;M ′

2;M ′
3 ⊢m M ′

4

M1,M
′
1;M2,M

′
2;M3,M

′
3 ⊢m M4,M

′
4

M-PAIR

M1;M2;M3 ⊢m M4

n[M1];n[M2];n[M3] ⊢m n[M4]
M-XML

T ;T ;T ⊢m T
M-T

mutable(M1);M2;M3 ⊢m M3
M-MUT

M2 <∶M1 M2 /<∶M ′
1 M3 <∶M1

M1;M2;M3 ⊢m M4

M1∣M ′
1;M2;M3∣M ′

3 ⊢m M4

M-UNION1

M2 <∶M1 M2 <∶M ′
1

M3 <∶M1 M ′
3 <∶M ′

1

M1;M2;M3 ⊢m M4 M ′
1;M2;M ′

3 ⊢m M ′
4

M1∣M ′
1;M2;M3∣M ′

3 ⊢m M4∣M ′
4

M-UNION2

M2 <∶M1 M3 <∶M1 M1;M2;M3 ⊢m M4

M1∣M ′
1;M2;M3 ⊢m M4

M-UNION3

M2 <∶M1 M3 <∶M1

M ′
2 <∶M ′

1 M ′
3 <∶M ′

1

M1;M2;M3 ⊢m M4 M ′
1;M ′

2;M ′
3 ⊢m M ′

4

M1∣M ′
1;M2∣M ′

2;M3∣M ′
3 ⊢m M4∣M ′

4

M-UNIONALL

Figure 8. Mutable

if M2 were a subtype of M ′
1, which it is not. To illustrate this, look

back at the rate function in Listing 2. The page enters the rate func-
tion with current state rating page, and the current state returned
by the rate function is rec page. The system merges the three part
union in rec page with the ratings element in rating page. It does
so by discarding the other two nodes in the union with M-UNION1.

In the rare case that the input is a subtype of both halves of
the union, the system conservatively considers both halves of the
output in M-UNION2. When both the input and output are not
unions then rule M-UNION3 discards half of the union in the
maximum state. Finally, M-UNIONALL is the same as M-PAIR,
except additional subtyping premises are added to properly align
the union type halves. There is no rule for the case when the input
is a union type, but the output is not since it is impossible.

An alternative solution to the mutable keyword is to introduce
bounded quantification [7, 24] to our system. Bounded quantifi-
cation can sometimes more powerfully provide opportunities for
reuse. However, as explained in Section 2.3, bounded quantifica-
tion does not scale as well to XML documents with multiple mu-
table sections. In addition, we believe programmers will better un-
derstand the simple semantics of the mutable keyword — that one
can assign to the enclosed subtree — than the complex semantics
of bounded quantification.

www.manaraa.com

e ∣µ↦ e ∣µ

let x = v in e ∣µ↦ [v/x]e ∣µ
E-LETV

e1 ∣µ↦ e′1 ∣µ′

let x = e1 in e2 ∣µ↦ let x = e′1 in e2 ∣µ′
E-LET

` ∉ dom(µ)
<n>v</n> ∣µ↦ ` ∣ [`↪ <n>v</n>]µ

E-XML

` ∉ dom(µ)
v1v2 ∣µ↦ ` ∣ [`↪ v1v2]µ

E-PAIR
µ(`) = v1v2

`.1 ∣µ↦ v1 ∣µ
E-PROJ1

µ(`) = v1v2

`.2 ∣µ↦ v2 ∣µ
E-PROJ2

µ(`) = <n>v</n>
`∗ ∣µ↦ v ∣µ

E-*

` ∶= v2 ∣µ↦ () ∣ [`↪v2]µ
E-ASGN

page t ∣µ↦ t ∣µ
E-PAGE

(λx∶τ.∆⇒e)(v) ∣µ↦ [v/x]e ∣µ
E-APP

Figure 9. Operational Semantics

3.7 Operational Semantics
We define DynXML with a small step operational semantics. The
store, µ, is carried along (possibly changed) after each step. The full
operational semantics is shown in Figure 9. The first thing most
readers will notice is that there is only one congruence rule, E-
LET. This is because expressions must be bound to a let and only
terms appear in other syntactic categories. E-XML evaluates a new
XML document by creating a new location in the store and storing
the document in that location. Similarly, E-PAIR evaluates a pair
of XML documents by creating a new location for the pair. Rules
E-PROJ1, E-PROJ2, E-* project out the first element of a pair, the
second element of a pair, and the internals of a tree respectively.
The rest of the rules provide standard semantics for let, assignment
and application.

Notably absent from our syntax is an explicit operator for lo-
cation dereferencing (written ! in most systems). Instead, the three
rules E-PROJ1, E-PROJ2, E-* perform both their main functions,
described in the previous paragraph, and dereference the location
of a pair or tree from the store. Our locations point not only to
values as in standard systems, but also to pairs and trees. This sup-
ports the common idiom in dynamic web programming to assign
directly to the page or subpage. These are not values in the tradi-
tional sense because they can take a step, instead they are part of a
special category in our syntax, s, of store “values.” We use an equi-
recursive [12] approach to recursive types and therefore we also do
not have any rules for folding and unfolding.

4. Related Work
Context logic [6], a novel spatial logic, which we introduced in
Section 1, is also able to check that mutable XML trees always
conform to a schema. Context logic is used to express the pre
and post conditions of Hoare logic. The work has been used to
specify the W3C Document Object Model (DOM) [16]. Their logic
is more expressive than the specifications in DynXML, but it is
more heavyweight than our types-based system and therefore less
easily automatable. We have not implemented DynXML, but our
group has successfully automated a similar permission-based effect
system [3].

Event handlers were first embedded in XML trees in Xdπ [15],
an extension of the π-calculus for modeling distributed pro-
grams. Their event handlers, which are π-processes extended with
location-migration and, like the event handlers in DynXML, XML
mutation. However, they do not check if the mutated trees conform
to a schema. Their focus is on dynamic web services with an XML
data store, not mutable web pages. The other related work falls into
three categories: industrial frameworks and tools for constructing
web applications, programming language support for XML types,
and web application programming languages.

Since the popularization of AJAX in 2004, there has been mas-
sive effort in industry aimed at writing client-side code more ab-
stractly. The general strategy employed by industry is to produce a
web application framework which allows to write their client-side
code as plugins in Java, C# or Ruby. The framework is responsible
for generating HTTP responses which include JavaScript code to
perform the actions specified by the plugin. Google Web Toolkit6

generates JavaScript from arbitrary Java code. The framework pro-
vides basic syntactic checks to ensure that the code is translatable
to JavaScript, but it does not ensure that the page manipulations the
programmer writes are valid.

The AJAX support in JavaServer Faces7 and ASP.NET employ
a very different tactic. The frameworks generate a Java or C# class
to represent the structure of a page. Client-side code manipulates
an object of this class and the compiler checks that these manip-
ulations safely read from and write to the representation. Unfor-
tunately, the object/XML impedance mismatch [22] makes it es-
sentially impossible for the classes generated by the frameworks to
accurately represent the page. In JavaServer Faces and ASP.NET,
only top level nodes in the XML tree (i.e. those not embedded in
lists, union types, etc.) are specified by the classes and therefore all
other manipulations use unsafe features of Java or C#.

Programming languages researchers have extensively investi-
gated support for XML within programming languages. However,
unlike DynXML, almost all of this work has focused on immutable
XML trees. Hosoya and Pierce provide the foundation for our work
with regular expression types [21]. Hosoya and Pierce define sub-
typing in terms of set inclusion. They also define an algorithm for
efficiently determining if the set of XML documents that have type
A is a subset of the set of XML documents with type B [21]. There
system is more expressive in that there are pairs of XML types
that are subtypes in their system, but not in ours. We expect that
we could easily incorporate their subtyping rules into our system.
However, their rules are substantially more complex than ours and
including them would needlessly complicate our proof. The regular
expression pattern matching employed by Hosoya and Pierce [19]
can also be easily adapted to DynXML by modifying their rules to
use the types within our permissions instead of regular types. Every
place the acceptance relation is used in their matching rules, written
t ∈ T , we would replace T with the current state in the permission
to t.

CΩ [4] and XStatic [14] attempt to add support for XML types
to Java-like languages, however the trees in both of these languages
are immutable. Flux [8] supports mutation of XML trees, but it is
aimed at update queries of XML data, not direct manipulation of
XML webpages. XJ [17] adds supports for both querying and in-
place mutation of XML trees to Java. However, it does not constrain
these mutations to a type nor does it prevent page manipulating
programs from going wrong.

Finally, several researchers have proposed languages for unify-
ing web application development into one language. The Links
project [11] compiles an ML-like language into JavaScript on

6 http://code.google.com/webtoolkit/
7 http://java.sun.com/javaee/javaserverfaces/

http://code.google.com/webtoolkit/
http://java.sun.com/javaee/javaserverfaces/

www.manaraa.com

the client, O’Caml on the server, and SQL for database access.
ML5 [23] extends ML with a modal logic for reasoning about
distributed resources. Swift [9] is a Java-like language for writ-
ing web applications that are automatically partitioned to ensure
conformance to security policies. None of these languages support
sophisticated types for XML, and both ML5 and Links avoid state
and mutable data.

5. Conclusion
Dynamic web applications are playing an ever more important role
in our lives. Every passing day brings more and more complex and
dynamic web applications. We have moved beyond e-commerce,
search, and webmail. We are replacing traditional software with
web software—Salesforce.com is already the dominant enterprise
customer relational management tool and Google Docs is com-
monly used in place of Microsoft Office. Many popular web appli-
cations even allow end users to develop powerful extensions (e.g.
Facebook applications).

At the same time, web applications are very brittle. Everyone
who uses the web regularly has experienced data loss, browser
crashes, button clicks that don’t do anything, etc. As we men-
tioned in the introduction, one can quickly see a lot of evidence
of this problem simply by checking the browser’s error console af-
ter long surfing session. This trend of more and more dynamic web
applications is not sustainable without significant improvement of
programming languages and tools used to build these applications.
DynXML provides the foundations for a solution to this important
problem. We believe the specification and checking capabilities it
provides are powerful enough to guarantee the absence of structural
errors and lightweight enough to be practically applied to real ap-
plications. We are currently implementing DynXML as part of the
Plaid language in order to evaluate the practicality of the mecha-
nisms descripted in this paper.

Acknowledgments
We would like to thank the Éric Tanter and the PLAID group
for their helpful feedback and suggestions. This research was sup-
ported by DARPA grant #HR00110710019. The first author is sup-
ported by a National Defense Science and Engineering Graduate
Fellowship.

References
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an xml-centric

general-purpose language. In ICFP ’03: Proceedings of the Eighth
ACM International Conference on Functional Programming, pages
51–63.

[2] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In OOPSLA ’07: Proceedings of the 22nd ACM conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 301–320.

[3] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical api protocol
checking with access permissions. In ECOOP ’09: Object Oriented
Programming, 23rd European Conference, pages 195–219.

[4] G. Bierman, E. Meijer, and W. Schulte. The essence of data access in
CΩ. In ECOOP 2005: Object-Oriented Programming, 19th European
Conference, pages 287–311.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0 (fifth edition), November
2008. http://www.w3.org/TR/REC-xml/.

[6] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update.
In POPL ’05: Proceedings of the 32nd ACM Symposium on Principles
of Programming Languages, pages 271–282.

[7] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Comput. Surv., 17(4):471–523, 1985.

[8] J. Cheney. FLUX: functional updates for XML. In ICFP ’08: Pro-
ceeding of the 13th ACM International Conference on Functional Pro-
gramming, pages 3–14.

[9] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng. Secure web application via automatic partitioning. SIGOPS
Oper. Syst. Rev., 41(6):31–44, 2007.

[10] W. W. W. Consortium. XHTML 1.0 strict document type defini-
tion. W3C Recommendation, 2002. http://www.w3.org/TR/xhtml1/
dtd/xhtml1-strict.dtd.

[11] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In FMCO ’06: Formal Methods for Components
and Objects, 5th International Symposium, pages 266–296.

[12] K. Crary, R. Harper, and S. Puri. What is a recursive module? SIG-
PLAN Not., 34(5):50–63, 1999.

[13] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer, October
2004. http://www.w3.org/TR/xmlschema-0/.

[14] V. Gapeyev and B. C. Pierce. Regular object types. In ECOOP ’03:
Object-Oriented Programming, 17th European Conference, pages
469–474.

[15] P. Gardner and S. Maffeis. Modelling dynamic web data. Theor.
Comput. Sci., 342(1):104–131, 2005. ISSN 0304-3975. doi: http:
//dx.doi.org/10.1016/j.tcs.2005.06.006.

[16] P. A. Gardner, G. D. Smith, M. J. Wheelhouse, and U. D. Zarfaty.
Local hoare reasoning about dom. In PODS ’08: Proceedings of the
27th ACM symposium on Principles of Database Systems, pages 261–
270.

[17] M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke, R. Bor-
dawekar, I. Pechtchanski, and V. Sarkar. XJ: facilitating XML pro-
cessing in Java. In WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 278–287.

[18] H. Hosoya and M. Murata. Boolean operations and inclusion test for
attribute-element constraints. Theor. Comput. Sci., 360(1):327–351,
2006.

[19] H. Hosoya and B. C. Pierce. Regular expression pattern matching for
XML. J. Funct. Program., 13(6):961–1004, 2003. ISSN 0956-7968.

[20] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML process-
ing language. ACM Trans. Interet Technol., 3(2):117–148, 2003.

[21] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[22] R. Lämmel and E. Meijer. Revealing the X/O impedance mismatch. In
Datatype-Generic Programming, volume 4719 of LNCS, pages 285–
364. Springer, 2007.

[23] T. Murphy VII, K. Crary, and R. Harper. Type-safe distributed pro-
gramming with ml5. In Trustworthy Global Computing 2007.

[24] B. C. Pierce. Bounded quantification is undecidable. In POPL ’92:
Proceedings of the 19th ACM symposium on Principles of Program-
ming Languages, pages 305–315.

[25] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115:38–94, 1994.

http://www.w3.org/TR/xhtml1/dtd/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/dtd/xhtml1-strict.dtd

	Introduction
	Language
	XML Types
	Functions and Event Handlers
	Maintaining Precise State

	Formal System
	Syntax
	Preliminaries
	Subtyping
	Typing Rules
	Event Handlers
	Mutable Keyword
	Operational Semantics

	Related Work
	Conclusion

